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Abstract

A new absorbing boundary condition (ABC) is presented for the solution of Maxwell equations in unbounded spaces.
Called the Huygens ABC, this condition is a generalization of two previously published ABCs, namely the multiple absorb-
ing surfaces (MAS) and the re-radiating boundary condition (rRBC). The properties of the Huygens ABC are derived the-
oretically in continuous spaces and in the finite-difference (FDTD) discretized space. A solution is proposed to render the
Huygens ABC effective for the absorption of evanescent waves. Numerical experiments with the FDTD method show that
the effectiveness of the Huygens ABC is close to that of the PML ABC in some realistic problems of numerical electromag-
netics. It is also shown in the paper that a combination of the Huygens ABC with the PML ABC is very well suited to the
solution of some particular problems.
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1. Introduction

In recent years, two novel absorbing boundary conditions (ABC) appeared in the literature, for use in
numerical electromagnetics with the finite-difference time-domain (FDTD) method. These ABCs are the mul-
tiple absorbing surfaces (MAS) condition [1], and the re-radiating boundary condition (rRBC) [2,3]. They
were developed independently and formulated in slightly different manners, but both rely on the same basic
principle that consists of cancelling the outgoing field leaving the domain by means of equivalent currents that
radiate a field equal in magnitude and opposite in sign to the field to be cancelled.

The principle of the MAS and rRBC is then simple and attractive. Unfortunately, some difficulties arise as
implementing them, because the outgoing field on the surface where the equivalent currents are impressed,
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called the Huygens surface [4], cannot be known rigorously. An operator is used to obtain an estimate of the
equivalent currents. From this, the cancellation is not perfect, resulting in a certain amount of reflection from
the proposed ABCs.

In this paper, we revisit this kind of ABCs. We consider more general ABCs, called Huygens ABCs
(HABCs), that hold as special cases the MAS and the rRBC. We derive theoretical properties of the Huygens
ABCs in continuous spaces as well as in the discrete FDTD space. This permits results and observations in [1–
3] to be interpreted. Especially, we show that the residual field radiated outside the Huygens surface is the time
derivative of the outgoing field, while the field reflected towards the inner domain is integrated on time as it
passes back through the Huygens surface. We also show that the overall reflection from a HABC is equal,
rigorously, to the reflection from the ABC formed with the operator used to estimate the equivalent currents.
This is true for both traveling and evanescent waves. From this, methods [1–3], and more generally any
HABC, cannot be viewed as novel ABCs. They are only alternative implementations of ABCs based on
use of operators, for example alternative implementations of Higdon operator ABCs [5,6]. In consequence,
ABCs [1–3] suffer from the same drawbacks as the operator ABCs. The most important is the strong reflection
of the evanescent waves present in many problems of electromagnetics solved with numerical methods. This is
verified in this paper with a FDTD experiment.

In the last part of the paper we show that Huygens ABCs are of valuable interest in some problems of
numerical electromagnetics, despite of their equivalence to previously known operator ABCs. As shown in
[1–3], high-order HABCs can be easily implemented by juxtaposing several one-order HABCs, without the
stability problems faced when implementing high-order operator ABCs. However, the operators used in [1–
3] are only designed to absorb traveling waves, they reflect in totality evanescent waves, so that the domain
of application of the MAS [1] and rRBC [2,3] is probably narrow. We suggest two alternative ways to apply
Huygens ABCs in an effective manner in realistic applications of numerical electromagnetics. The first way
relies on the introduction of operators designed to absorb evanescent waves. By means of HABCs they can
be easily combined with such traditional operators as Higdon operators. This permits effective absorption
of both traveling and evanescent waves present in many problems, like using the complex frequency shifted
(CFS) PML ABC [7,8]. This is illustrated with a waveguide problem using the FDTD method. The second
suggested use of HABCs relies on their easy combination with the PML ABC. This is of interest in certain
problems where both traveling waves and evanescent waves are present at low frequency. Then, a HABC
placed in front of a CFS PML permits the traveling waves to be absorbed at low frequency, where the
CFS PML is transparent to these waves [7,8]. This is discussed in detail and illustrated in the paper with a
FDTD experiment.
2. Principle of the absorbing boundary condition based on use of a Huygens surface

In electromagnetics, the equivalence theorem states that the field produced within a given part of space by
sources located outside this part can be reproduced by impressing the following electric and magnetic current
densities upon the surface separating the two parts:
~J s ¼~n� ~H i ð1aÞ
~K s ¼ �~n� ~E i ð1bÞ
where n is the unit vector normal to the surface, oriented in the direction opposite to the sources, and Ei and Hi

are the fields that would exist upon the surface if the sources were present. The surface where equivalent cur-
rents are set is called a Huygens surface [4]. The equivalent currents radiate no field in the part of space where
the sources are present. This permits incident waves to be enforced in finite methods [4] and is a requirement
for achieving reflectionless Huygens ABCs.

An important remark can be done about the equivalent currents (1). If the orientation of the unit vector
were reversed, that is the unit vector oriented towards the sources, the sign of the equivalent currents would
be also reversed, so that the radiated field would be opposite to the field radiated by the sources. In a different
context [9], such a Huygens surface whose unit vector in (1) is opposite to its physical orientation has been
called an anti-Huygens surface. In the context of the Huygens ABC, a fundamental consequence of this
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remark is that the Huygens surface designed to radiate fields whose sources are inside the enclosed domain will
act as an anti-Huygens surface for the field reflected back towards this domain.

Consider now a part of space where the Maxwell equations are solved with such finite methods as the
FDTD method or the finite element method (FEM). To simulate the free space surrounding the computa-
tional domain, an ABC is needed so as to absorb the outgoing field. The idea used in [1–3] consists of sur-
rounding the domain of interest with a Huygens surface (Fig. 1) that radiates a field equal in magnitude
and opposite in sign to the physical outgoing field. This can be realized by impressing electric and magnetic
current densities Js and Ks from (1), with Hi and Ei equal to the opposite of the outgoing field. In theory, the
sum of the physical field with the impressed field equals zero, so that the actual field outside the Huygens sur-
face is zero. No additional ABC is needed on the outer boundary of the domain because no field reaches this
boundary. Moreover, currents Js and Ks radiate no field inside the Huygens surface, so that there is no
reflected field in the region of interest. In theory, the ABC is perfect.

In the actual implementation of this simple idea, things are a little different, because the field (Ei,Hi) that
would be present in the absence of the Huygens surface cannot be computed at the exact location of the Huy-
gens surface. This can be viewed easily with the FDTD method. More fundamentally, in continuous spaces
this is because the field is discontinuous through the Huygens surface. Another way to be convinced that
the outgoing field on the Huygens surface cannot be known a priori is as follows: If this field were known
exactly, we could impress it as a boundary condition. This would be a perfect ABC.

Thus, in order to implement the opposite field using (1), an estimate of the outgoing field at the Huygens
surface location must be computed. Both in [1–3], this field is obtained from values of the field at inner FDTD
nodes close to the Huygens surface. In [1] a Higdon operator is used. Such operators [5,6] have been designed
to be used as an ABC. In [2,3] the field is evaluated more simply as the value at the closest inner node at the
previous time step. Using such estimates the cancellation of the outgoing field is not perfect. A residual small
field is radiated outside the Huygens surface. If the domain is ended with a perfect electric condition (PEC) the
small field is reflected back towards the Huygens surface. Unfortunately, this small field is then amplified as it
passes through the Huygens surface. It was shown in [1] in the case of the first-order Higdon operator that the
overall reflected field is equal to the field that would be reflected if this operator were implemented as an oper-
ator ABC on the boundary of the domain. In this paper, we show both in the continuous space and in the
discretized FDTD space that this is also true with any operator used to estimate the outgoing field at the Huy-
gens surface location. From this, the most important conclusion of the present paper is that any Huygens ABC
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Fig. 1. The principle of the Huygens absorbing boundary condition.
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is equivalent, in theory, to an operator ABC. However, this does not mean that Huygens ABCs are of no inter-
est for numerical electromagnetics, as it will be shown in the last part of the paper.

3. The Huygens absorbing boundary condition in the continuous space

3.1. The Huygens ABC with the elementary operator

Let us consider the one-dimensional case depicted in Fig. 2a. An incident wave Ui+(t � x/c) travels in x

direction, where U is either E or H fields and c is the speed of light. In order to cancel the incident field,
we wish that a Huygens surface generates at location xc a field equal in magnitude and opposite in sign to
the incident field. Unfortunately, this cannot be achieved rigorously, because the total field is discontinuous
at xc so that the exact incident field is not known at this location. We can only estimate Ui+(xc, t) in function
of Ui+(x, t) to the left of xc. To this end, we assume that the field impressed in the equivalent currents (1) is a
linear function of the actual field Ua present at several times and several locations to the left of xc. Denoting
this field as eU ðxc; tÞ, this can be written as
eU ðxc; tÞ ¼
XN

k¼1

akU aðxc � dxk; t � dtkÞ ð2Þ
where dxk > 0, dtk P 0, and
XN

k¼1

ak ¼ 1 ð3Þ
In the case of Fig. 2a, we have Ua = Ui+, so that quantity eU ðxc; tÞ is the desired estimate of the incident
field. For this reason, we call eU ðxc; tÞ the estimate of the incident field, although this is not true in the case
of an incident wave propagating to the left, like in Fig. 2b, since then we have Ua = Ut�, where Ut� is the wave
transmitted through the Huygens surface. In the actual implementation of the Huygens ABC, Ua will be the
superposition of both kinds of waves.
+ x
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HABC

Ui-Ut-
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Fig. 2. The Huygens absorbing boundary condition (HABC) in the one-dimensional case.
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Let us now define the linear operator
P ¼
XN

k¼1

akKð�dxkÞZð�dtkÞ ð4Þ
where K and Z are shift operators in space and time defined by
Kð�dxÞUðx; tÞ ¼ Uðx� dx; tÞ and Zð�dtÞUðx; tÞ ¼ Uðx; t � dtÞ ð5Þ

Then, estimate (2) can be rewritten as
eU ðxc; tÞ ¼ PU aðxc; tÞ ð6Þ

In this paragraph, we only consider the following operator, called the elementary operator:
P e ¼ Kð�dxÞZð�dtÞ ð7Þ

with which (2) becomes
eU ðxc; tÞ ¼ U aðxc � dx; t � dtÞ ð8Þ
The estimate of the incident field at (xc, t) equals the field that was present at location xc � dx at time t � dt.
Operator (7) was used by Higdon as an absorbing boundary condition in paper [5] where it is called the space–
time extrapolation operator.

Consider now the case in Fig. 2a. The field transmitted to the right-hand side of xc, at an infinitesimal dis-
tance from xc, is the addition of Ui+(xc, t) that would be present in the absence of the Huygens surface, with
the field radiated from the Huygens surface, that is the opposite of eU ðxc; tÞ. Denoting as Ut+ the transmitted
field, this reads
U tþðxcþ; tÞ ¼ Uiþðxc; tÞ � eU ðxc; tÞ ð9Þ
Using (8) and (9), and with Ua = Ui+, the transmitted field is then
U tþðxcþ; tÞ ¼ Uiþðxc; tÞ � Uiþðxc � dx; t � dtÞ ð10Þ

Assuming now that dx and dt are small, we can write
U iþðxc � dx; t � dtÞ ¼ Uiþðxc; tÞ �
oU iþðxc; tÞ

ox
dx� oU iþðxc; tÞ

ot
dt ð11Þ
with which (10) becomes
U tþðxcþ; tÞ ¼
oUiþðxc; tÞ

ox
dxþ oU iþðxc; tÞ

ot
dt ð12Þ
Moreover, since the incident field is of the form Ui+(t � x/c), we have
oU iþðxc; tÞ
ox

¼ � 1

c
oUiþðxc; tÞ

ot
ð13Þ
so that (12) can be rewritten as
U tþðxcþ; tÞ ¼ dt � dx
c

� �
oU iþðxc; tÞ

ot
: ð14Þ
The transmitted field equals the time derivative of the incident field, multiplied with a coefficient that
depends on the space and time distances dx and dt used for estimating the incident field. The above derivation
relies on (11). It is rigorous as dx and dt tend to zero.

Consider now the case in Fig. 2b where the incident wave comes from the right-hand side. The incident field
is then of the form Ui�(t + x/c) and a transmitted field Ut�(t + x/c) is present to the left of xc. Assume that the
Huygens surface is left unchanged in comparison with the previous case. The estimate of the impressed field is
given by (8) with now Ua = Ut�. This impressed field propagates to the left, i.e. the source is now to the right
of the Huygens surface, so that the sign of the normal in (1) is opposite to its physical orientation. The
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Huygens surface acts as an anti-Huygens surface for this impressed field. From this, it will radiate a wave
equal to the ‘‘opposite of the opposite’’ of the estimate eU ðxc; tÞ. At an infinitesimal distance to the left of
xc, the transmitted field is then
Ut�ðxc�; tÞ ¼ U i�ðxc; tÞ þ eU ðxc; tÞ ð15Þ

in place of (9). With elementary operator (7), (8), the estimate eU ðxc; tÞ equals the field at location xc�dx and
time t�dt, that is
eU ðxc; tÞ ¼ Ut�ðxc� � dx; t � dtÞ ð16Þ

so that
Ut�ðxc�; tÞ ¼ U i�ðxc; tÞ þ U t�ðxc� � dx; t � dtÞ ð17Þ

Using now
Ut�ðxc� � dx; t � dtÞ ¼ Ut�ðxc�; tÞ �
oU t�ðxc�; tÞ

ox
dx� oU t�ðxc�; tÞ

ot
dt ð18Þ
Eq. (17) becomes
oUt�ðxc�; tÞ
ox

dxþ oUt�ðxc�; tÞ
ot

dt ¼ U i�ðxc; tÞ ð19Þ
Finally, using a relation like (13) with sign + in place of sign – due to the propagation to the left
oUt�ðxc�; tÞ
ot

¼ 1

ðdt þ dx=cÞUi�ðxc; tÞ ð20Þ
or equivalently
Ut�ðxc�; tÞ ¼
1

ðdt þ dx=cÞ

Z
Ui�ðxc; t0Þdt0: ð21Þ
Thus, in the case of waves propagating in �x direction the transmitted field equals the integral of the inci-
dent field, multiplied with a coefficient.

If we now consider the case in Fig. 2c, where the 1D space is ended with Dirichlet condition U = 0, that is a
perfect electric condition or a perfect magnetic condition in electromagnetics. The wave incident from the left-
hand side is transmitted through the HABC according to (14). It is then reflected from U = 0 condition with
reflection coefficient �1, and transmitted back to the left of the Huygens surface according to (21). The overall
reflection, i.e. the ratio r of fields Ur and Ui in Fig. 2c, is then
r ¼ dx� cdt
dxþ cdt

ð22Þ
The reflected wave is a copy of the incident wave, i.e. the Huygens ABC is non dispersive.
Consider now an operator absorbing boundary condition placed at the end of the 1D space, as depicted in

Fig. 3. An operator ABC consists of enforcing a value estimated from the field at one or several locations and
times in the inner space. Assume that this estimate is given by the elementary operator (7). Then, at location xb

the incident and reflected waves satisfy the following relationship:
Uiðxb; tÞ þ Urðxb; tÞ ¼ U iðxb � dx; t � dtÞ þ U rðxb � dx; t � dtÞ ð23Þ

For small dx and dt, we can write
Uiðxb � dx; t � dtÞ ¼ Uiðxb; tÞ �
oU iðxb; tÞ

ox
dx� oU iðxb; tÞ

ot
dt ð24aÞ

Urðxb � dx; t � dtÞ ¼ U rðxb; tÞ �
oU rðxb; tÞ

ox
dx� oUrðxb; tÞ

ot
dt ð24bÞ
where the space derivatives can be replaced with time derivatives, because Ui and Ur are of the form Ui(t � x/c)
and Ur(t + x/c), respectively. Inserting then (24a) and (24b) into (23), the following is obtained:
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0 ¼ oUiðxb; tÞ
ot

dx
c
� oU iðxb; tÞ

ot
dt � oUrðxb; tÞ

ot
dx
c
� oU rðxb; tÞ

ot
dt ð25Þ
Integrating on time, this yields
U iðxb; tÞðdx=c� dtÞ ¼ U rðxb; tÞðdx=cþ dtÞ ð26Þ

From this, ratio r = Ur/Ui is equal to (22). Thus, the reflection from the operator ABC equals, rigorously, the
reflection from the Huygens ABC that relies on the same operator for estimating the Huygens currents.

A numerical experiment is reported in Fig. 4. The experiment was performed using the FDTD method. We
used shifts equal to the steps of the FDTD scheme, that is dx = Dx and dt = Dt. The incident wave was the
Gaussian pulse
EiðtÞ ¼ e�
ðt�3T Þ2

T 2 T ¼ 1 ns ð27Þ

The calculation was performed with a source placed to the left of the Huygens surface, and two observation

points were placed on the two sides of the Huygens surface, at A and B locations, respectively. The corre-
sponding FDTD results are compared with theoretical predictions (14) and (22). Fig. 4a shows the incident
wave (27) at A, Fig. 4b compares the transmitted wave at B with its prediction (14), Fig. 4c shows the wave
Transmission through the Huygens surface and reflection from the Huygens ABC. A comparison of theory with FDTD one-
sional experiment. The FDTD steps are Dx = 5 cm and Dt = 100 ps. The wave is observed at A and B locations on the two sides of

BC. The distances from the source to A, HABC, B and PEC are 5, 10, 15 and 60 FDTD cells, respectively.
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reflected from the PEC condition at B, and Fig. 4d compares the overall reflected wave at A with its prediction
(22). As observed, the FDTD results are in a quite good accordance with (14) and (22). Especially, the wave at
B location is the derivative of the incident wave (27). This wave is then integrated in time as passing back
through the Huygens surface so that it becomes a copy of the incident wave (27) multiplied with coefficient
(22). An additional calculation was performed with the HABC replaced with the operator ABC at the end
of the domain. As expected the reflection observed at A location was superimposed to that from the HABC.
In conclusion, the FDTD experiments are in a good accordance with predictions derived in continuous spaces.
This suggests that (14) and (21) are also valid in the FDTD discretized space. This will be proved theoretically
later in this paper.

3.2. Derivation using single frequency waveforms

If in place of waves of the form U(t � x/c) we consider single frequency waves we also find the same con-
clusions as in the above. For the direct transmission in Fig. 2a and an incident wave exp(jxt � jxx/c), where x
is the angular frequency, the following replaces (11):
Uiþðxc � dx; t � dtÞ ¼ U iþðxc; tÞe�jxdtejxdx=c ð28Þ

Substituting then (28) into (10) yields
Utþðxcþ; tÞ ¼ U iþðxc; tÞ½1� e�jxdtejxdx=c� ð29Þ

In the case where xdt� 1 and xdx/c� 1 that corresponds to dt small vs. the period of the wave, and dx

small vs. the wavelength, using the first-order expansion of the exponentials, (29) becomes
Utþðxcþ; tÞ ¼ jx dt � dx
c

� �
Uiþðxc; tÞ ð30Þ
that is consistent with (14) because a multiplication with jx in frequency domain is a time derivative in time-
domain. Similarly, for the reverse transmission in Fig. 2b, the equivalent of (21) can be obtained where the
integral in (21) is replaced with Ui�(xc, t)/jx. This also yields the overall reflection coefficient (22).

3.3. Generalization to 2D and 3D cases

The above derivations can be generalized easily to 2D and 3D spaces. In those cases, assume that the direc-
tion of propagation forms an angle h with respect to direction x. The waveforms are then U(t � xcosh/c) or
U(t + xcosh/c), so that celerity c is replaced with c/cosh in the derivations, especially in (14), (21) and (23).
The overall reflection from the HABC, and the reflection from the elementary operator ABC, are then
r ¼ cos hdx� cdt
cos hdxþ cdt

ð31Þ
3.4. The Huygens ABC with general operators

In the above the elementary operator (7) has been used for the estimation of the incident wave at the Huy-
gens surface location. All the derivations can be reproduced with general operator (4) that is a linear combi-
nation of elementary operators, with coefficients satisfying (3).

For the case in Fig. 2a where the incident wave propagates to the right, (2) and (9) yield
Utþðxcþ; tÞ ¼ U iþðxc; tÞ �
XN

k¼1

akUiþðxc � dxk; t � dtkÞ ð32Þ
With expansions like (11), this can be rewritten as
Utþðxcþ; tÞ ¼ U iþðxc; tÞ �
XN

k¼1

akUiþðxc; tÞ þ
XN

k¼1

ak
oU iþðxc; tÞ

ox
dxk þ

oU iþðxc; tÞ
ot

dtk

� �
ð33Þ
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Using then (3) and (13), the following transmitted field is obtained in the 2D and 3D cases where the inci-
dent wave forms an angle h with x direction:
U tþðxcþ; tÞ ¼
oUiþðxc; tÞ

ot

XN

k¼1

ak dtk �
cos hdxk

c

� �
ð34Þ
This shows that the transmitted wave is the derivative of the incident wave with any operator (4) used for
estimating the incident wave at the Huygens surface location. In the case of Fig. 2b where the wave propagates
to the left, (2) and (15) yield
U t�ðxc�; tÞ ¼ Ui�ðxc; tÞ þ
XN

k¼1

akU t�ðxc� � dxk; t � dtkÞ ð35Þ
Proceeding as in the above, the following transmitted wave is obtained, in place of (21):
U t�ðxc�; tÞ ¼
1PN

k¼1akðdtk þ cos hdxk=cÞ

Z
U i�ðxc; t0Þdt0 ð36Þ
From this, the overall reflection for the space bounded with a Dirichlet condition, like in Fig. 2c is
r ¼
PN

k¼1akðcos hdxk � cdtkÞPN
k¼1akðcos hdxk þ cdtkÞ

ð37Þ
Generalization of derivations (23)–(26) easily shows that (37) is also the reflection from operator (4) used as
a boundary condition. Thus, with (2)–(4) the wave radiated from the HABC is the derivative of the outgoing
wave, the wave reflected from the outer boundary is integrated as it passes back through the HABC, and the
overall reflection is equal, rigorously, to the reflection from the corresponding operator ABC. Strictly speak-
ing, this clearly demonstrates that Huygens ABCs are not novel ABCs. They are only alternative implemen-
tations of previously used operator ABCs.

The derivations and conclusions in the above may be slightly changed with some special cases of operator
(4). This arises when the first-order terms of the expansion (33) vanish. As shown in Appendix A, in that case
the first derivative in (34) is replaced with the second derivative, and the integral in (36) is replaced with a dou-
ble integral on time. The coefficients in (34) and (36) are also modified, so that the overall reflection (37) is no
longer valid. The right reflection that replaces (37) is given in Appendix A.

3.5. The Higdon operators

The Higdon operators [5,6] are an important class of operators used as absorbing boundary conditions.
Obviously they can also be used to obtain the estimate of the incident field at the Huygens ABC. The Higdon
boundary condition considered in [6] can be written as
Yp

j¼1

ðI � P H1ðhjÞÞ
" #

Uðxb; tÞ ¼ 0 ð39Þ
where I is the identity operator and
P H1ðhjÞ ¼ Kð�DxÞZð�DtÞ þ wðhjÞKð�DxÞ � wðhjÞZð�DtÞ ð40aÞ

with
wðhjÞ ¼
cDt � cos hjDx
cDt þ cos hjDx

ð40bÞ
where Dx and Dt are the space and time steps of the finite method, and hj angles are the incidences where the
reflection vanishes. Boundary condition (39) can be rewritten as
ðI � P HpÞUðxb; tÞ ¼ 0 ð41Þ
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with
P Hp ¼ I �
Yp

j¼1

ðI � P H1ðhjÞÞ ð42Þ
In the following, PHp is called the p-order Higdon operator.
The first term of the first-order Higdon operator PH1 (40a) is the elementary operator (7). Its second term is

also (7) in the special case dt = 0. But its third term wZ(�Dt) is not a special case dx = 0 of (7), because (4) has
been defined for dx > 0, in accordance with the fact that the incident field cannot be known at the Huygens
surface location. So, strictly speaking, Higdon operator (40a) is not a special case of general operator (4). Like
using it as an operator ABC [6], in actual implementation of (40a) the term wZ(�Dt) is applied to the estimateeU ðxc; tÞ in place of the exact field U(xc, t). It is proved in Appendix B that this replacement left unchanged the
overall reflection from the HABC. It is given by (37) with ak coefficients in (40a). This also holds with any
operator (4). If dxk = 0 for one or several terms in (4), reflection (37) is still valid. From this, we can consider
that the domain of definition of operator (4) can be extended to dx P 0, with U replaced with eU in the case
dx = 0.

From (42) the second-order operator reads
P H2 ¼ P H1ðh1Þ þ P H1ðh2Þ � P H1ðh1ÞP H1ðh2Þ ð43Þ

Using (40a), and with K(�Dx)K(�Dx) = K(�2Dx) and Z(�Dt)Z(�Dt) = Z(�2Dt), the following second-

order Higdon operator is obtained:
P H2 ¼ ðw1 þ w2ÞKð�DxÞ � w1w2Kð�2DxÞ � ðw1 þ w2ÞZð�DtÞ þ 2ð1þ w1w2ÞKð�DxÞZð�DtÞ
� ðw1 þ w2ÞKð�2DxÞZð�DtÞ � w1w2Zð�2DtÞ þ ðw1 þ w2ÞKð�DxÞZð�2DtÞ � Kð�2DxÞZð�2DtÞ

ð44Þ
where w1 = w(h1) and w2 = w(h2). Notice that (3) holds with coefficients in (44). Like (40a), (44) is an operator
(4) with the extension of its definition to dx = 0. Finally, since (40a) and (44) are special cases of (4), using the
Higdon operators to estimate the incident wave to be impressed at the Huygens surface of the Huygens ABC,
the overall reflection is equal to the reflection from the corresponding Higdon operator used as an absorbing
boundary condition (39). This is also true with any p-order Higdon operator (42). This will be confirmed by
means of numerical experiments with the FDTD method in the next section.

3.6. The Huygens ABC with evanescent waves

In previous section, only traveling waves have been addressed, that is waves whose magnitude is con-
stant in the direction perpendicular to the direction of propagation. Unfortunately, this is not sufficient,
because in most problems of numerical electromagnetics evanescent waves are present. It can be shown
that general plane wave solutions of the Maxwell equations are as follows, where U is any component
of the field
U ¼ U 0ejx t�cosh v
c ðx cos hþy sin hÞ½ �e�x

c sinh vðy cos h�x sin hÞ ð45Þ

where �p < h < p and �1 < v <1. The phase propagates in direction h with respect to x, and the magnitude
decreases in the direction perpendicular to h. With (45), we can write, in place of (11) or (28)
Uiþðxc � dx; t � dtÞ ¼ U iþðxc; tÞe�jxdtejxcosh v cos h
c dxe�

x
c sinh v sin hdx ð46Þ
Substituting then (46) into (10) the following transmitted wave is obtained
Utþðxcþ; tÞ ¼ U iþðxc; tÞ 1� e�jxdtejxcosh v cos h
c dxe�

x
c sinh v sin hdx

h i
ð47Þ
In view of the application to finite methods, where dx and dt will be the space and time steps, we can assume
that xdt� 1, as with traveling waves, and that xjsinhvjdx/c� 1, in order that the evanescent waves be accu-
rately sampled. From this, (47) becomes
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U tþðxcþ; tÞ ¼ jx dt � cosh v cos h
dx
c

� �
þ x

c
sinh v sin hdx

� �
Uiþðxc; tÞ ð48Þ
that holds as a special case the traveling wave case (coshv = 1 and sinhv = 0). In the general case, the field
outside the Huygens surface is not the derivative of the incident field, an additional term proportional to
the incident wave is present, due to the real term in the bracket in (48).

It is known that coefficients h and v of evanescent waves reflected from a PEC or any interface are changed
to p � h and �v, respectively, so that the wave reflected from the Dirichlet condition ending the HABC is of
the form
U ¼ U 0ejx t�cosh v
c ð�x cos hþy sin hÞ½ �eþx

c sinh vð�y cos h�x sin hÞ ð49Þ

Using this in (17), the following transmission is obtained, in place of (21):
U t�ðxc�; tÞ ¼
1

jx dt þ cosh v cos h dx
c

� �
� x

c sinh v sin hdx
U i�ðxc; tÞ ð50Þ
Finally, taking account of reflection �1 from the Dirichlet condition, the overall reflection coefficient of the
evanescent wave from the HABC is
r ¼ jðcosh v cos hdx� cdtÞ � sinh v sin hdx
jðcosh v cos hdxþ cdtÞ � sinh v sin hdx

ð51Þ
The above derivation can be generalized to the general operator (2)–(4). This yields
r ¼
PN

k¼1ak½jðcosh v cos hdxk � cdtkÞ � sinh v sin hdxk�PN
k¼1ak½jðcosh v cos hdxk þ cdtkÞ � sinh v sin hdxk�

ð52Þ
It could be shown easily that (52) is also the reflection from the operator used as an operator ABC. Obvi-
ously, (51) and (52) reduce to (31) and (37) in the case of traveling waves (sinhv = 0 and coshv = 1). Various
special cases can be found from (51) and (52). In the case of strongly evanescent waves (cosh� 1), we have
rðcosh v� 1Þ ¼ 1 ð53Þ

The reflection of strongly evanescent waves is total from the HABC with any operator (4), especially with

Higdon operators. Then, the HABC suffers from the same drawback as the Higdon operator ABC, it cannot
absorb evanescent waves that are present in most problems of practical interest in numerical electromagnetics.
This will be confirmed by numerical experiments in the following. Another special case is when h = ±p/2. The
wave is evanescent in x-direction and the phase varies in direction perpendicular to x. The reflection is then
r ¼ �
PN

k¼1ak½jcdtk � sinh vdxk�PN
k¼1ak½jcdtk � sinh vdxk�

ð54Þ
whose modulus equals unity (ratio of complex conjugates). In the case of traveling waves (sinhv = 0) we have
r = �1. This is consistent with the phase propagation in direction parallel to the boundary (incidence
h = ± p/2). In the case of strongly evanescent waves, i.e. if jsinhvj � 1, we have r = 1, in accordance with
(53).

Numerical experiments have been performed with the FDTD method in a 2D case involving both traveling
and evanescent waves. The problem is depicted in Fig. 5. The first transverse magnetic (TM1) mode is
impressed in a parallel plate waveguide. For this mode, above cut-off frequency
xc ¼
pc
a

ð55Þ
the field is of the form
H zðx; y; tÞ ¼ H 0ejxt e�jxc sin hy þ ejxc sin hy
� �

e�jxc cos hx ð56aÞ
where sinh = xc/x. This field is the sum of two traveling waves propagating in directions ±h. Below cut-off
(55), the field is the addition of two evanescent waves
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Hzðx; y; tÞ ¼ H 0 e�jxc cosh vy þ ejxc cosh vy
� �

e�
x
c sinh vx ð56bÞ
where coshv = xc/x and sinhv > 0. These waves are special cases of (45) with h ± p/2 and hv < 0.
Calculations were performed either with a Huygens ABC, an operator ABC, or with both conditions. A

reference solution was computed with a large waveguide in order that the reflection from its end was not
viewed during the calculation. The field was recorded some cells in front of the HABC and the reflected field
was obtained by subtracting the reference field. The calculations were performed with a pulse. Results in fre-
quency domain were computed by means of a Fourier transform.

Fig. 6 shows comparisons of reflection from a Huygens ABC (HABC) with reflection from the correspond-
ing operator ABC (OABC). In both cases the operators are either a first-order or a second-order Higdon oper-
ator. In addition, the reflection without ABC, computed with a PEC ending the domain, is reported. As
observed, reflections from the HABC and from the OABC are identical, provided that they rely on the same
operator. This is true in the traveling wave region, where the Higdon ABCs are effective, and in the evanescent
region where the Higdon operators do not absorb the field. The small attenuation in this region, about 6 dB, is
only due to the natural decay of the evanescent waves. So, this experiment confirms what has been derived
theoretically. The HABC is equivalent, rigorously, to the operator ABC relying on the same operator. Espe-
cially, using such operators as the Higdon operators that reflect in totality evanescent fields, the HABC also
reflects in totality evanescent fields.
Comparison of the reflection coefficients computed using either an operator ABC at the end of the waveguide or a Huygens ABC in
ction with a PEC ending the waveguide. In both cases the operators are either the first-order Higdon operator (40) or the second-

igdon operator (44). The reflection coefficients are expressed in decibels (dB), i.e. R(dB)=20log10(R).



Fig. 7. Reflection from the end of the waveguide using a Huygens ABC (HABC) in conjunction with an operator ABC (OABC). In both
ABCs the operators are Higdon operators.
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Fig. 7 shows reflections computed using combinations of the HABC with the OABC. In the first case
the first-order Higdon operator is used with both the HABC and the OABC. As expected the reflection is
identical to that obtained with the second-order operator impressed either as a HABC or as an OABC
(Fig. 6). In the second experiment, the second-order Higdon operator is used, so that the set HAB-
C + OABC is equivalent to a fourth-order Higdon ABC. As observed, the reflection of traveling waves
is then quite small. But such a high-order operator remains ineffective for the absorption of evanescent
waves. The reflection is total, in contrast to the reflection from a PML that may be quite small, as illus-
trated with the result reported in the figure. The PML is the optimized CFS-PML eight cells in thickness
used in [8].

4. The Huygens ABC in the discretized space of the FDTD method

In previous section, the reflection from the HABC has been addressed in continuous spaces. As known, in
numerical methods the field radiated from Huygens surfaces slightly differ from its theoretical value. Never-
theless, the reported numerical experiments have shown a very good agreement of the FDTD method with
predictions in continuous spaces, especially in Fig. 4. This suggests that the properties of the continuous
HABC are preserved in the FDTD discretized space. This is confirmed theoretically in the following by deriv-
ing the FDTD counterparts of transmissions (14), (21) and reflection (22).

We consider the 1D case whose FDTD grid is depicted in Fig. 8. We assume that an incident wave with
components Ey and Hz propagates in +x direction. The Huygens surface is placed between nodes Ey(0)
and Hz(1/2). Using (1) the equivalent currents at these nodes, at times n + 1/2 and n, are
J nþ1=2
Sy ð0Þ ¼ � eH nþ1=2

z ð1=2Þ and Kn
Szð1=2Þ ¼ �eEn

yð0Þ ð57Þ
where eEy and eH z are the estimates of the incident components. Using the elementary operator (7), with dx and
dt equal to the space and time steps of the FDTD grid, the estimates read
Hz(-1/2) Ey(0) Hz(1/2) Ey(1)Ey(-1)

x

yHuygens Surface 

Fig. 8. Implementation of the Huygens surface in the one-dimensional FDTD grid.
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eH nþ1=2
z ð1=2Þ ¼ H n�1=2

z ð�1=2Þ and eEn
yð0Þ ¼ En�1

y ð�1Þ ð58Þ
Introducing the opposite of surface current densities (57) into the FDTD equations, the following set is
obtained for the advance of the field at nodes Ey(0) and Hz(1/2)
Enþ1
y ð0Þ ¼ En

yð0Þ �
Dt

e0Dx
½H nþ1=2

z ð1=2Þ � H nþ1=2
z ð�1=2Þ� � Dt

e0Dx
H n�1=2

z ð�1=2Þ ð59aÞ

Hnþ1=2
z ð1=2Þ ¼ H n�1=2

z ð1=2Þ � Dt
l0Dx

½En
yð1Þ � En

yð0Þ� �
Dt

l0Dx
En�1

y ð�1Þ ð59bÞ
Notice that (59a) and (59b) are consistent with the fact that Ey(0) is in the incident field region and Hz(1/2)
is in the total field region (incident field plus radiated field). For instance, (59a) can be interpreted as the reg-
ular FDTD equation at node Ey(0), in the incident region, because the additional term H n�1=2

z ð�1=2Þ subtracts
the radiated field to the total field H nþ1=2

z ð1=2Þ.
For a given incident wave propagating to the right, we assume that there are a transmitted wave propagat-

ing to the right and a reflected wave propagating to the left. We assume in addition that the space and time
dependences of Ey are of the form
Eyi ¼ Ei0ejxt�jkxx ð60aÞ
Eyr ¼ Er0ejxtþjkxx ð60bÞ
Eyt ¼ Et0ejxt�jkxx ð60cÞ
where kx is the wave number in the FDTD discretized space. It is known [4] that the impedance in a FDTD
grid is like in the continuous space, so that the same dependences also hold for Hz fields, with magnitudes
Hi0 = Ei0/Z0, Hr0 = �Er0/Z0, Ht0 = Et0/Z0, where Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
. Enforcing (60) into (59) yields
ðEi0 þ Er0ÞejxDt ¼ Ei0 þ Er0 �
Dt

e0Dx
Et0

Z0

ejxDt=2 � Ei0

Z0

ejxDt=2ejkxDx=2 þ Er0

Z0

ejxDt=2e�jkxDx=2

� �
� Dt

e0Dx
Ei0

Z0

e�jxDt=2ejkxDx=2 � Er0

Z0

e�jxDt=2e�jkxDx=2

� �
ð61aÞ

Et0

Z0

ejxDt=2 ¼ Et0

Z0

e�jxDt=2 � Dt
l0Dx

½Et0e�jkxDx=2 � ðEi0 þ Er0Þ� �
Dt

l0Dx
½Ei0e�jxDtejkxDx þ Er0e�jxDte�jkxDx� ð61bÞ
Denoting as a the quantity
a ¼ cDt
Dx
¼ 1

Z0

Dt
e0Dx

¼ Z0

Dt
l0Dx

ð62Þ
system (61) for unknowns Er0 and Et0 can be rewritten as
AEr0 þ aEt0 ¼ C ð63aÞ
UEt0 þ VEr0 ¼ W ð63bÞ
where
A ¼ 2j sinðxDt=2Þ þ ae�jkxDx=2ð1� e�jxDtÞ ð64aÞ
C ¼ ½�2j sinðxDt=2Þ þ aejkxDx=2ð1� e�jxDtÞ�Ei0 ð64bÞ
U ¼ 2j sinðxDt=2Þ þ ae�jkxDx=2 ð64cÞ
V ¼ �aþ ae�jkxDxe�jxDt ð64dÞ
W ¼ ½a� aejkxDxe�jxDt�Ei0 ð64eÞ
If we now assume that the frequency is far from the cut-off frequency of the FDTD grid, that is xDt� 1
and kxDx� 1, using the first-order expansions of exponentials in (64) yields



368 J.-P. Bérenger / Journal of Computational Physics 226 (2007) 354–378
A ¼ jxDtð1þ aÞ ð65aÞ
C ¼ jxDtða� 1ÞEi0 ð65bÞ
U ¼ a ð65cÞ
V ¼ �jaðkxDxþ xDtÞ ð65dÞ
W ¼ jaðxDt � kxDxÞEi0 ð65eÞ
Solving (63) for unknown Et0 and using (65), the following is obtained:
Et0 ¼ �jxDt
2axDt � 2kxDx

�akxDx� xDt � 2axDt
Ei0 ð66Þ
Using then a = cDt/Dx and x = c kx that holds in the FDTD space far from the mesh cut-off, after some
manipulations the transmitted field (66) becomes
Et0 ¼ jx Dt � Dx
c

� �
Ei0 ð67Þ
Similarly, solving (63) for Er0 the following reflected field is obtained:
Er0 ¼
xDt � xDx=c� xDt þ xDx=c

�xDx=c� xDt
Ei0 ¼ 0 ð68Þ
Eq. (67) is identical to (30) and is consistent with (14). In the FDTD space, the wave transmitted through
the Huygens surface is also the derivative of the incident wave, multiplied with the same coefficient as in con-
tinuous spaces. And from (68) the Huygens surface does not reflect the incident wave. However, we should
remember that (67) and (68) are first-order expansions, valid far from the cut-off of the FDTD grid. In actual
computations, the Huygens surface will radiate a small field back to the inner domain, as it always arises in
FDTD calculation with Huygens surfaces.

Let us now consider an incident wave propagating to the left, as in Fig. 2b. Enforcing in (59) waveforms like
(60) with opposite signs in the exponentials on kx, and with Hi0 = �Ei0/Z0, Hr0 = Er0/Z0, Ht0 = �Et0/Z0, the
following system is obtained in place of (61):
Et0ejxDt ¼ Et0 �
Dt

e0Dx
�Ei0 þ Er0

Z0

ejxDt=2 þ Et0

Z0

ejxDt=2e�jkxDx=2

� �
� Dt

e0Dx
�Et0

Z0

e�jxDt=2e�jkxDx=2 ð69aÞ

�Ei0 þ Er0

Z0

ejxDt=2 ¼ �Ei0 þ Er0

Z0

e�jxDt=2 � Dt
l0Dx

½Ei0ejkxDx=2 þ Er0e�jkxDx=2 � Et0� �
Dt

l0Dx
Et0e�jxDte�jkxDx ð69bÞ
By means of a derivation similar to the previous one, assuming again that xDt� 1 and kxDx� 1, the fol-
lowing transmitted field is obtained:
Et0 ¼
1

jxðDt þ Dx
c Þ

Ei0 ð70Þ
which is consistent with the transmitted field found in the continuous case (21). The derivation also shows that
the reflected field is zero.

In summary, in the FDTD discretized space the transmitted waves are like in continuous spaces. For an
incident wave reflected back to the inner domain, like in Fig. 2c, from (68) and (70) the overall reflection is
also given by (22). It could be easily shown that the reflection from the operator ABC based on the elementary
operator is also equal to (22) in the FDTD space. So, with the FDTD method the overall reflection from the
Huygens ABC equals, rigorously, the reflection from the corresponding operator ABC. This has been derived
in the case of the elementary operator (7). This also holds with general operators (4) that are linear combina-
tions of elementary operators, and in 2D or 3D FDTD grids as well.

5. Two applications of the Huygens absorbing boundary conditions

As derived in the above, Huygens ABCs are equivalent to operator ABCs so that they cannot be viewed as
novel ABCs. However, the interest of HABCs is larger than that of operator ABCs, because a HABC can be
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easily combined with other HABCs or with any other ABC. In the following we present two applications of
the HABCs for the solution of problems that could not be addressed using operator ABCs. In the first case
operators designed to absorb evanescent waves are combined with operators designed to absorb traveling
waves. In the latter case an HABC is combined with the PML ABC.

5.1. Huygens ABC for the absorption of both traveling and evanescent waves at the end of waveguides

Operator ABCs proposed in the literature [5,6,11] cannot deal properly with evanescent waves, because
they were designed to absorb waves whose magnitude does not depend on space coordinates. Nevertheless,
in some special problems, operators suited to the absorption of evanescent waves can be easily found. This
is the case at the end of waveguides, where the phase is constant and the magnitude is evanescent in longitu-
dinal direction x (56b). This permits the field on the boundary to be extrapolated from the field in the inner
domain. In mathematical terms, let us consider the operator
P eva1 ¼ bKð�dxÞ ð71Þ

where 0 < b 6 1. In the case of Fig. 2a, using this operator in place of (4) the estimate of the field at Huygens
ABC location reads
eU ðxc; tÞ ¼ bU iþðxc � dx; tÞ ð72Þ

that yields, for an incident wave of the form (56b)
eU ðxc; tÞ ¼ bU iþðxc; tÞe

x
c sinh vdx ð73Þ
Using this estimate in (9) the transmitted field is then
Utþðxcþ; tÞ ¼ ð1� be
x
c sinh vdxÞU iþðxc; tÞ ð74Þ
Similarly, for the wave reflected from the Dirichlet condition, the following counterpart of (21) is obtained:
Ut�ðxc�; tÞ ¼
1

1� be�
x
c sinh vdx Ui�ðxc; tÞ ð75Þ
so that the overall reflection from the HABC is
r ¼ � 1� be
x
c sinh vdx

1� be�
x
c sinh vdx ð76Þ
This reflection vanishes, provided that
b ¼ e�
x
c sinh vdx ð77Þ
This condition only holds for a single frequency. In the case of a waveguide mode, like the TM1 mode, we
have cosh v = xc/x, so that
x2sinh2v ¼ x2
c � x2 ð78Þ
that reduces to x sinh v = xc far below cut-off (55). Using this and (55), (77) becomes
b ¼ e�
p
adx ð79Þ
With operator (71) and b from (79), the low frequency evanescent waves are totally absorbed by the HABC.
It can be easily shown that (76) is also the reflection coefficient using (71) as an operator ABC on the boundary
of the domain. By cascading (71) like the first-order Higdon operator (42), the following second-order oper-
ator is obtained:
P eva2 ¼ b1Kð�dxÞ þ b2Kð�dxÞ � b1b2Kð�2dxÞ ð80Þ
whose reflection is the product of two coefficients (76) with b replaced with b1 and b2.
Fig. 9 shows results of experiments with the waveguide in Fig. 5 and operators (71) and (80). The reflection

was computed using (71) and (80) either with the HABC or as an operator ABC. As expected, once again the



Fig. 9. Reflection from the end of the waveguide using operators (71) or (80), denoted as Peva1 and Peva2, respectively, implemented either
as an HABC or as an OABC. In the last two results, denoted as Peva4, operator Peva2 is implemented with two HABCs.
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reflections from the HABC and from the OABC are superimposed, as with Higdon operators in Fig. 6. But
conversely to Fig. 6, here the evanescent waves are strongly absorbed while the traveling waves are totally
reflected. Two additional results are reported in Fig. 9. The first one was computed using two HABCs, each
one with operator (80). This was equivalent to a fourth-order operator ABC. The absorption is widely
improved. The last result was also computed with two HABCs, but with different b’s in place of unique value
(79). One b was set to (79) and the other three were set using (77) and (78) in order that the reflection vanishes
at frequencies 1, 2.5 and 3 GHz, respectively. As expected, at frequencies close to cut-off this optimized oper-
ator provides us with a better performance than with all the zero reflections set to zero frequency.

Considering results in Figs. 6 and 9, one can expect that combining operators (71) or (80) with Higdon
operators, both traveling and evanescent waves will be absorbed. This can be easily realized by using several
HABCs, or several HABCs and one OABC at the end of the domain. Results of calculations with such com-
binations are shown in Fig. 10. The first result is a combination of the first-order Higdon operator with (71).
As expected the reflection is a combination of the first-order reflections observed in Figs. 6 and 9. The second
result was obtained using (80) and the second-order Higdon operator. It is in accordance with results in Figs. 6
and 9, except at low frequency where the reflection grows. The origin of this low frequency spurious reflection
that appears when combining operator (80) with Higdon operators is not understood. Finally, the third result
was computed with three second-order HABCs and one second-order OABC, so that the global ABC was
Fig. 10. Reflection from the end of the waveguide using various combinations of Higdon operators (Phig1 and Phig2) with Peva1 and Peva2

operators (71) and (80). The third result was obtained using three HABCs and one OABC, as represented in Fig. 5.
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equivalent to an eighth-order operator ABC. The second-order Higdon operator was used with the first two
HABCs. Operator (80) was used with the third HABC and with the OABC (the b coefficients were those of the
fourth-order optimized case in Fig. 9). The second HABC was implemented as a reversed Huygens surface (see
Section 6.2 in the following for the definition of reversed surfaces). This reduces the above mentioned unex-
plained spurious low frequency reflection. As observed in Fig. 10, the attenuation is quite good at all the fre-
quencies. The performance of this eighth-order ABC is close to that of the eighth-cell CFS-PML [8].

In summary, the Huygens ABC allows easy combinations of operators designed to absorb traveling waves
with operators designed to absorb evanescent waves. This permits a quite good absorption of both kinds of
waves in waveguide structures, like using the CFS-PML ABC. Notice that the operator designed for absorbing
the evanescent waves depends on the mode to be absorbed (79), like the optimized a parameter of the CFS-
PML [8]. From this the two ABCs may suffer from similar drawbacks if several modes have to be absorbed.
Combinations of Higdon operators with operators (71) or (80) probably could be used for solving other prob-
lems where traveling waves and evanescent waves are separated with a transition or cut-off frequency, like in
wave-structure interaction problems [7].

5.2. A combination of the Huygens ABC with the PML ABC

A unique feature of the HABC is the possibility of easy combinations with any other ABC, because the
HABC can be placed in front of the other ABC. This has been done in the above where the HABC has been
used in conjunction with an operator ABC. This can be also done with the PML ABC as illustrated in the
following.

We consider the problem in Fig. 5. We now assume that the TM0 mode is also present in addition to the
TM1 mode. The TM0 mode has no cut-off, it is a traveling mode up to zero frequency. From this, if we use a
CFS-PML optimized for the TM1 mode [8], the TM0 mode is not absorbed below the TM1 mode cut-off. This
is because the optimized CFS-PML is designed so as to be only a real stretch of coordinates below the cut-off,
in order to reduce the numerical reflection of evanescent waves [8]. This is confirmed with results in Fig. 11
where only the TM0 mode was exited in the guide. This mode is totally reflected at low frequency when using
the CFS-PML optimized for the TM1 mode. Conversely, using the Higdon operators with a HABC, the TM0

mode is strongly absorbed.
The results in Fig. 12 were computed with both TM0 and TM1 modes in the waveguide (with the same mag-

nitude). As expected, with the second-order Higdon HABC alone only the TM0 mode is absorbed below TM1

cut-off, resulting in a reflection of about �16 dB (natural decay of TM1 and total absorbtion of TM0). With
the CFS-PML alone, the TM1 mode is well absorbed at any frequency, but the TM0 mode reflection is total at
low frequency. With the first-order or second-order Higdon HABC placed in front of the CFS-PML, the two
modes are very well absorbed, resulting in a quite small reflection over the whole frequency spectrum.
Fig. 11. Reflection of the TM0 mode from the end of the waveguide, computed with the first-order or the second-order Higdon HABC,
and with the PML ABC optimized for the TM1 mode.



Fig. 12. Reflection from the end of the waveguide when TM0 and TM1 mode are present. Results are shown for waveguide terminations
with a Higdon HABC, the CFS-PML and two combinations of the Higdon HABC with the CFS-PML.
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In summary, the HABC can be easily used in conjunction with a PML ABC when facing specific challeng-
ing problems. The problem with TM0 and TM1 modes could be also addressed with only a CFS-PML by vary-
ing its a parameter, but using an HABC for absorbing the TM0 mode is an alternative solution that is effective
and simple. Notice that there exist other problems of electromagnetics where traveling and evanescent waves
are present at the same frequency, as the scattering from periodic corrugated surfaces. They could be also
addressed with a HABC-PML combination.

6. The re-radiating boundary condition (rRBC) and the multiple absorbing surfaces (MAS) ABC

In the following we briefly review ABCs [1–3] that are special cases of Huygens ABCs introduced in the
present paper. We show that most numerical results reported in these papers can be interpreted using the the-
oretical properties of Huygens ABCs.

6.1. The re-radiating boundary condition (rRBC)

The rRBC relies on the introduction of the concept of teleportation of fields. The field one time step in the
past and one space step backwards is ‘‘teleported’’ upon a Huygens surface to radiate a field opposite to the
outgoing field. The teleported field is then identical to estimate (8) with dx and dt equal to the FDTD steps Dx

and Dt. So, the rRBC is a Huygens ABC relying on the elementary operator (7) called space–time extrapola-
tion in [5]. In addition, the computational domain is ended with an impedance condition called a Huygens
termination in [2,3]. It can be easily shown that this condition is equivalent to a first-order operator ABC.

There is neither derivation nor theoretical prediction in [2,3], only FDTD experiments are provided. How-
ever, the authors observed that the pulse outside the rRBC resembles the derivative of the incident pulse. They
used the terms derivation and re-integration to characterize the direct and reverse effects of the rRBC. Obvi-
ously, this is in accordance with theoretical predictions (14) and (21). Having in mind the fact that the rRBC
relies on the elementary operator, most FDTD experiments in [2] can be easily interpreted. Consider for exam-
ple Fig. 5 in [2]. With the rRBC and a PEC at the end of the domain, the reflection equals �9 dB. This is in a
good accordance with the theoretical reflection from elementary operator (22) that yields �10 dB with
Dx = 2cDt (the exact ratio Dx/cDt is not given in [2], it equals 2 in [3]). Adding the impedance termination
the reflection drops to �37 dB because this condition is better than the elementary operator at normal
incidence.

Reflection observed in Fig. 7 is also consistent with use of the elementary operator with the rRBC. From
(31) the reflection from this operator vanishes at an incidence angle of 60� (assuming that Dx = 2cDt). With
three rRBCs, the reflection is the cube of (31). The relative insensitivity of the reflection in function of the inci-
dence angle, as observed in Fig. 7 of [2], is probably due to this reflection coefficient whose best performance
(zero reflection) is at wide incidence, around 60�.
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Numerous experiments reported in [3] show that the rRBC performance can be close to that of the PML
ABC. However, generalization of the conclusions of these tests is questionable, because they were performed
in a 2D domain with the electric field perpendicular to the domain. It is known that any ABC performs very
well with this kind of problems, because no evanescent waves have to be absorbed. For example, Higdon and
Engquist–Majda [10] ABCs also yield quite good absorption in that case [11]. In realistic FDTD applications
where evanescent waves are present, results with the rRBC would be far poorer, because the elementary oper-
ator reflects in totality evanescent waves, as shown theoretically (53) and confirmed with waveguide experi-
ments like the ones in Fig. 6.

6.2. The multiple absorbing surface (MAS)

The absorbing surface concept in [1] is introduced in the FDTD method without explicit reference to equiv-
alent currents radiating a field opposite to the outgoing field. Nevertheless, in continuous spaces it is equiva-
lent to the Huygens ABC in Figs. 1 or 2. The estimate of the incident field at Huygens surface location is
computed using the first-order Higdon operator.

The field transmitted through the Huygens surface is derived in [1]. Although the field components are set at
nodes of the FDTD grid, the derivation is performed in the continuous space, with harmonic waves, like in
Section 3.2 of the present paper. The author was close to discovering that the transmitted wave is the deriv-
ative of the incident wave. Indeed, by expanding the exponentials in formula (23) of [1] the transmission coef-
ficient becomes proportional to jx, like in (30). More precisely, formula (B.2) in Appendix B is obtained with
jx in place of the derivative (and with w = �p due to different notations). Similarly, expanding the exponen-
tials in (26) of [1], formula (B.3) is obtained with 1/jx in place of the integral. However, strictly speaking the
derivations in [1] are not correct, because they assume that the incident field is known at Huygens surface loca-
tion. This is not possible as discussed in Section 3.5 in the above and in Appendix B, so that the exact field is
replaced with the estimated field. From this and from derivations in Appendix B, coefficients 1/(1 � p) and
1 � p are missing in transmissions (23) and (26) in [1]. Nevertheless, the overall reflection in [1] is correct,
because it equals the product of the two transmissions. From this, an important conclusion in [1] is correct,
that is the reflection from the Higdon MAS ABC is identical, rigorously, to the reflection from the correspond-
ing Higdon operator used as an ABC.

Several absorbing surfaces are stacked in [1], so as to increase the absorption, and the concept of pairs of
Huygens surfaces is introduced. The first surface of a pair is the regular surface, like in Figs. 1 and 2. The sec-
ond one is reversed. It is implemented as if the field to be absorbed were an ingoing field. From the point of
view of the overall reflection of the outgoing field, such a reversed Huygens surface is equivalent to the regular
one. Its overall reflection coefficient is the same. The difference is only that the outgoing field is first integrated,
and second derived as it passes back through the surface. It is claimed in [1] that such pairs of surfaces remove
the instability observed by the author as using several surfaces. In our computations we never observed insta-
bility, even as using four second-order surfaces in the case in Fig. 10. However, our experiments were only 2D
experiments with waveguide problem in Fig. 5 where there is no corner region. May be the instability arises
from the corner regions. Nevertheless, we tested a pair of surfaces like in [1] and we observed a significant
reduction of the low frequency spurious reflection observed when Higdon operators are used in conjunction
with operators (71) or (80), like in the eighth-order case in Fig. 10.

As in [2,3], the experiments with a source point in a 2D domain reported in Fig. 9 of [1] yield attenuations as
good as using a PML ABC. But once again such experiments do not correspond to most situations of com-
putational electromagnetics, because of lack of evanescent waves. Even by stacking a large number of absorb-
ing surfaces, as long as only Higdon operators are used to estimate the outgoing field, the performance of the
MAS method would be poor if the MAS surfaces were placed in the evanescent region. As we have shown in
the above, use of an operator designed for the absorbtion of evanescent waves is needed in such situations. The
last experiment in Fig. 10 of [1] also shows a very good agreement with the PML ABC, with both ABCs placed
quite close to a scattering sphere. Such a good agreement is due to the fact that the frequency of interest is
close to the resonance of the sphere, so that the field surrounding the sphere is weakly evanescent. At lower
frequency the field becomes strongly evanescent and the performance of the MAS method probably would
severely deteriorate.
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7. Conclusion

In this paper we have investigated absorbing boundary conditions called Huygens ABCs that hold as spe-
cial cases the previously published MAS [1] and rRBC [2,3]. The theoretical features of the Huygens ABCs
have been derived. The most important feature is that the Huygens ABCs are equivalent, in theory, to previ-
ously known operator ABCs. From this, Huygens ABCs are not novel ABCs, they are rather new implemen-
tations of previously used operator ABCs.

However, the interest of Huygens ABCs seems larger than that of operator ABCs, because a HABC can
be easily combined with other HABCs or with any other ABC. As reported in [1,2], HABCs equivalent to
high-order operator ABCs can be realized with no stability problem for the absorption of traveling waves
up to wide angles of incidence. In this paper we have shown that HABCs also allow operators designed to
absorb evanescent waves to be combined with regular operators designed to absorb traveling waves. This
permits problems where both evanescent and traveling waves are present to be addressed in a satisfactory
manner, like with a PML ABC. Especially, an experiment has been provided with a HABC equivalent to an
eighth-order operator ABC, with four orders devoted to the absorption of evanescent waves and four
orders devoted to the absorption of traveling waves. Another possible application of HABCs lies in the easy
combination of an HABC with a PML ABC. As shown by an experiment, this can be very well suited to
address some special problems where both evanescent and traveling waves are present at the same
frequencies.

In conclusion, the Huygens ABC concept is a promising implementation of operator ABCs. In waveguide
problems, by using operators designed to absorb evanescent waves the performance of the Huygens ABC can
be close to that of the PML ABC, in terms of the effectiveness of the absorption and in terms of the needed
computational resource. However, further works are needed so as to compare in a more exhaustive manner
the Huygens ABC with the PML ABC. What we can say now is that the Huygens ABC is probably an
ABC that can challenge the PML ABC, at least in some classes of applications.

Appendix A. Operators without first-order term

Let us consider the following operator:
P ¼ Kð�dxÞ þ Kð�dxÞZð�dtÞ � Kð�2dxÞZð�dtÞ ðA:1Þ

that is of the form (4). For a wave propagating to the right, the corresponding estimate (2) reads
eU ðxc; tÞ ¼ U iþðxc � dx; tÞ þ U iþðxc � dx; t � dtÞ � U iþðxc � 2dx; t � dtÞ ðA:2Þ
In place of first-order expansions like (11), we use here second-order expansions of the three terms to the
right-hand side of (A.2). This yields
eU ðxc; tÞ ¼ U iþðxc; tÞ �
oUiþðxc; tÞ

ox
dxþ 1

2

o
2Uiþðxc; tÞ

ox2
dx2 þ Uiþðxc; tÞ �

oU iþðxc; tÞ
ox

dx� oUiþðxc; tÞ
ot

dt
�

þ 1

2

o2U iþðxc; tÞ
ox2

dx2 þ 1

2

o2Uiþðxc; tÞ
ot2

dt2 þ o2U iþðxc; tÞ
otox

dxdt
�

� U iþðxc; tÞ �
oUiþðxc; tÞ

ox
2dx� oU iþðxc; tÞ

ot
dt þ 1

2

o2U iþðxc; tÞ
ox2

4dx2 þ 1

2

o2U iþðxc; tÞ
ot2

dt2

�
þ o2Uiþðxc; tÞ

otox
2dxdt

�

The sum of the first-order terms is zero so that the expansion reduces to
eU ðxc; tÞ ¼ U iþðxc; tÞ �
o

2Uiþðxc; tÞ
ox2

dx2 � o
2U iþðxc; tÞ

oxot
dxdt ðA:3Þ
Using (A.3) into (9) yields
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Utþðxcþ; tÞ ¼
o2U iþðxc; tÞ

ox2
dx2 þ o2Uiþðxc; tÞ

oxot
dxdt ðA:4Þ
Replacing then the derivatives on space with derivatives on time, we obtain
Utþðxcþ; tÞ ¼ �
o2U iþðxc; tÞ

ot2

dx
c

dt � dx
c

� �
ðA:5Þ
From this, the field transmitted through the Huygens surface is proportional to the second derivative of the
incident field, in place of the first derivative with the elementary operator or in the general case (2)–(4). This
has been verified with a FDTD experiment like the one in Fig. 4. Then, with (A.1) in place of (7) for estimating
the field on the Huygens surface, the wave outside the Huygens surface, at point B, was in a perfect agreement
with (A.5), i.e. it was the second derivative of the Gaussian pulse multiplied with coefficient in (A.5).

Let us now consider the wave propagating to the left, as in Fig. 2b. An expansion to the second-order like in
the above yields
eU ðxc; tÞ ¼ Ut�ðxc�; tÞ �
o2Ut�ðxc�; tÞ

ox2
dx2 � o2Ut�ðxc�; tÞ

oxot
dxdt ðA:6Þ
Inserting this into (15) we have
o
2Ut�ðxc�; tÞ

ox2
dx2 þ o

2Ut�ðxc�; tÞ
oxot

dxdt ¼ U i�ðxc; tcÞ ðA:7Þ
that yields, after replacement of the derivatives on space with derivatives on time
Ut�ðxc�; tÞ ¼
1

dx
c dt þ dx

c

� � Z Z
U i�ðxc; t0Þdt02 ðA:8Þ
Finally, in the case of Fig. 2c, where an incident wave propagating to the right is reflected from U = 0 con-
dition, using (A.5) and (A.8), the overall reflection is
r ¼ �Dx� cDt
Dxþ cDt

ðA:9Þ
This is the reflection from operator (A.1) used as an operator ABC. This could be easily derived in a direct
manner. This is also trivial because operator (A.1) is the complementary operator [12,13] of the elementary
operator (7), so that their reflections are opposite, as observed by comparing (A.9) with (22).

In the case of general operator (4), by expanding the field to the second-order like in the above, and by
assuming that the first-order terms equal zero, the following transmitted field is obtained:
Utþðxcþ; tÞ ¼ �
o2U iþðxc; tÞ

ot2

XN

k¼1

ak
cos2 hdx2

k

2c2
þ dt2

k

2
� cos hdxkdtk

c

� �
ðA:10Þ
in place of (34). Similarly, for the wave propagating to the left, we obtain
Ut�ðxc�; tÞ ¼ �
1PN

k¼1ak
cos2 hdx2

k
2c2 þ dt2

k
2
þ cos hdxkdtk

c

	 
 Z Z
U i�ðxc; t0Þdt02 ðA:11Þ
so that the overall reflection from the HABC reads
r ¼ �
PN

k¼1ak cos2 hdx2
k þ c2dt2

k � 2 cos hdxkcdtk

� �PN
k¼1akðcos2 hdx2

k þ c2dt2
k þ 2 cos hdxkcdtkÞ

ðA:12Þ
in place of (37) that equals zero in the absence of first-order term in the expansion of the field. It can be shown
that (A.12) is also the reflection from the same operator used as an operator ABC. Notice that (A.9) is con-
sistent with (A.12) for h = 0, i.e. using ak coefficients and shifts in (A.1) into (A.12) yields (A.9).

In summary, there exist operators of the form (4) with which the first-order term is absent in the expansion
of the field. This arises when the number of shifts with positive sign equals the number of shifts with negative
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sign, for both space and time. This is the case with (A.1) where there are two positive and two negative space
shifts, and one positive and one negative time shifts. The absence of the first-order term has no significant
impact on the major conclusion, which is the fact that the overall reflection from the HABC is identical to
the reflection from the corresponding operator ABC.

Appendix B. Higdon operators and extension of the general operator

Let us consider the incident wave propagating to the right in Fig. 2a. Using operator (40a) in place of (7)
and expansions like (11), if the incident field were known at Huygens surface location, estimate (6) would be
eU ðxc; tÞ ¼ U iþðxc; tÞ �
oUiþðxc; tÞ

ox
dx� oU iþðxc; tÞ

ot
dt þ wU iþðxc; tÞ � w

oU iþðxc; tÞ
ox

dx� wUiþðxc; tÞ

þ w
oUiþðxc; tÞ

ot
dt ðB:1Þ
Inserting (B.1) into (9) yields the transmitted field
U tþðxcþ; tÞ ¼ ð1� wÞdt � ð1þ wÞ dx
c

� �
oU iþðxc; tÞ

ot
ðB:2Þ
It can be easily verified that (B.2) is consistent with (34) for h = 0, i.e. using ak coefficients in (40a) into (34)
yields (B.2).

For a wave propagating to the left, a similar derivation yields
U t�ðxc�; tÞ ¼
1

ð1� wÞdt þ ð1þ wÞ dx
c

Z
U i�ðxc; t0Þdt0 ðB:3Þ
The overall reflection from the Huygens ABC is then
r ¼ �ð1� wÞcdt � ð1þ wÞdx
ð1� wÞcdt þ ð1þ wÞdx

ðB:4Þ
It can be verified with ak coefficients in (40a) that (B.3) and (B.4) are special cases of (36) and (37). Using
(40b) and replacing dx with coshdx so as to extend the above 1D derivation to the 2D or 3D cases, (B.4) gives
the well known reflection from a Higdon operator ABC [6]
r ¼ cos h1 � cos h
cos h1 þ cos h

ðB:5Þ
where h1 is the incidence where the reflection is zero.
Unfortunately, in the actual use of the Higdon operator, estimate (B.1) cannot be implemented, because the

exact incident field Ui+(xc, t � dt) is not known due to the discontinuity of the total field at xc. From this,
Ui+(xc, t � dt) is replaced with its estimate eU ðxc; t � dtÞ, that is the estimate at previous time step with a
finite-difference method. From this, the following replaces (B.1):
eU ðxc; tÞ ¼ U iþðxc; tÞ �

oUiþðxc; tÞ
ox

dx� oU iþðxc; tÞ
ot

dt þ wU iþðxc; tÞ � w
oU iþðxc; tÞ

ox
dx� w eU ðxc; tÞ

þ w
o eU ðxc; tÞ

ot
dt ðB:6Þ
Since eU is a first-order estimate of Ui+, we can write
o eU ðxc; tÞ
ot

dt ¼ oUiþðxc; tÞ
ot

dt þ 0ðdxdtÞ þ 0ðdt2Þ ðB:7Þ
so that eU can be replaced with Ui+ in the derivative of the last term in (B.6), with only a second-order error.
This yields
ð1þ wÞ eU ðxc; tÞ ¼ ð1þ wÞU iþðxc; tÞ � ð1þ wÞ oUiþðxc; tÞ
ox

dx� ð1� wÞ oUiþðxc; tÞ
ot

dt ðB:8Þ
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Inserting this into (9), the following transmitted field is obtained:
Utþðxcþ; tÞ ¼
1

1þ w
ð1� wÞdt � ð1þ wÞ dx

c

� �
oU iþðxc; tÞ

ot
ðB:9Þ
that differs from (B.2) with coefficient 1/(1 + w). For the wave propagating to the left, a similar derivation
yields
Ut�ðxc�; tÞ ¼
1þ w

ð1� wÞdt þ ð1þ wÞ dx
c

Z
Uiþðxc; t0Þdt0 ðB:10Þ
that differs from (B.3) with coefficient (1 + w). From (B.9) and (B.10), the overall reflection from the Higdon
HABC remains given by (B.4) or (B.5). In summary, since (B.2), (B.3), (B.4) are special cases of (34), (36), (37),
respectively, due to the replacement of the exact field with its estimate the field outside the HABC is divided
with (1 + w) in comparison with value predicted with (34), it is multiplied with (1 + w) in comparison with (36)
as it passes back through the Huygens surface, and at the end the overall reflection is still predicted by the
reflection of operator (4), that is (37).

The above derivations can be reproduced with any operator (4). Assuming that dxk = 0 for its first M terms,
operator (4) can be rewritten as
P ¼
XM

k¼1

akZð�dtkÞ þ
XN

k¼Mþ1

akKð�dxkÞZð�dxkÞ ðB:11Þ
This leads to the following transmitted field for the wave propagating to the right:
Utþðxcþ; tÞ ¼
oU iþðxc; tÞ

ot
1

Q

XN

k¼1

akðdtk � cos hdxk=cÞ ðB:12Þ
where
Q ¼ 1�
XM

k¼1

ak ðB:13Þ
In comparison with (34), the transmitted field is divided with coefficient Q. Notice that (B.9) is consistent
with (B.12), i.e. using M = 1 and a1 = �w in (B.12), (B.13), for h = 0 we obtain (B.9). For the wave propagat-
ing to the left, the derivation yields (36) multiplied with coefficient (B.13). And at the end, the overall reflection
from the HABC remains given by (37), with obviously dxk = 0 for k 6M.

In conclusion to the above, we can extend the definition of operator (4) to dxk 6 0, with the exact field
replaced with its estimate in (2) if dxk = 0. The overall reflection (37) is always valid. As a corollary, we
can consider that Higdon operators are special cases of general operator (4).

Two 1D experiments like in Fig. 4 were performed with the Higdon operator in place of the elementary
operator. With w = �0.268 and w = +0.318, corresponding to 3D zero reflection at incidences 30� and 75�,
respectively, the transmitted wave was in a perfect agreement with (B.9), i.e. the presence of coefficient 1/
(1 + w) was very well verified. And the magnitude of the wave reflected back to the inner domain was in agree-
ment with (B.4).
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